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Abstract. A general theory of quantum mechanical constants of motion of arbitrary order in 
the momenta is developed. Because of rotational invariance the theory assumes an elegant 
tensorial form. The fundamental equations for the nth-order constants of motion in m 
variables are set up in  Cartesian coordinates. The first two equations of the set do not 
contain the potential function and their solutions are shown to be polynomials of degree n 
and n - 1 with coefficients satisfying certain symmetry relations. The next two equations 
contain the first and the second derivatives of the potential function. From these equations 
all unknown functions are eliminated in the special cases r. = 3 and n = 4. The elimination 
gives partial differential equations for the potential function, of second and third order for 
n = 3, and third and fourth order for n = 4. The possibility of extending the results to higher 
values of n is indicated. 

To illustrate the use of the theory the ‘anisotropic oscillator’ in two dimensions is 
discussed in detail, and all its constants of motion of second and third order are determined. 
They correspond to the frequency ratios 2 : 1 and 3 : 1 only. There is only one constant of 
motion, of third order, for the frequency ratio 3 : 1. For the frequency ratio 2 : 1 there are 
three constants of motion and they do not appear to generate a Lie algebra. 

1. Introduction 

It is well known (Lenz 1924, Pauli 1926, Fock 1935, Bargmann 1936. Park 1960, Bethe 
and Leon 1962, Swamy and Biedenharn 1964, Dothan et a1 1965, Barut et al  1966, 
Flamand 1966, Bander and Itzykson 1966, Hughes 1967, Joseph 1967, Barut and 
Kleinert 1967, Majumdar and Basu 1974) that the so-called ‘accidental degeneracy’ of 
the energy levels of the hydrogen atom with regard to the orbital quantum number is 
caused by an operator (Englefield 1972 § 3.3) 

~ = ( 2 p ) - ’ ( p  X L - L X ~ ) - Z  e2r-’r (1) 

commuting with the Hamiltonian H = ( 2 p ) - l p 2  --Z e2/r. M is an additional constant 
of motion of second order in the momenta for the one-centre Coulomb problem. 
The components of L (the angular momentum) and M obey the commutation rules for 
the generators of O(4) if the energy is negative and of O(3, I )  if the energy is positive, 
and act as raising and lowering operators or, the states of the atom. In the hope of 
obtaining results of this kind having group-theoretical implications, many authors 
(Eisenhart 1934, 1948, Fris et a1 1965, Winternitz et a1 1966, Makarov et a1 1967, 
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856 S Datta Majumdar 

Havas 1975a, b, Dietz 1976) have studied the one-particle Schrodinger equation in two 
and three dimensions, and have determined all second-order constants of motion and 
the corresponding potentials. These investigations have revealed an intimate connec- 
tion between the existence of quadratic constants of motion and the separability of the 
Schrodinger equation. It has been found that a quadratic constant of motion can exist in 
the two-dimensional case if and only if the Schrodinger equation separates in one of the 
four coordinate systems in which the Helmholtz equation separates. In three dimen- 
sions separability is found to be equivalent to the existence of two quadratic constants of 
motion. Generally, one can expect that, in m dimensions, the separability would imply 
the existence of m - 1 quadratic constants of motion. Strictly speaking, the result is not 
new and occurs in the investigations of Stackel (1890, 1891, 1893), Levi-Civita (1904), 
Dall'Aqua (1908, 1912) and Burgatti (1911) on the Hamilton-Jacobi equation. 
Stackel was the first to point out the connection between separability and constants of 
motion. 

While the second-order constants of motion in two and three dimensions have been 
studied in detail, little work has been done on constants of motion of higher orders and 
in higher dimensions. The only exceptions are the isotropic harmonic oscillator, the 
anisotropic harmonic oscillator with rational frequency ratios, the one- and two-centre 
Coulomb problems, and the work of Majumdar and Englefield (1977, to be referred to 
as I) on third-order constants of motion. In the m-dimensional Coulomb problems the 
only constant of motion so far determined is the analogue of the operator M. The object 
of the present paper is partially to fill this gap by developing a general theory of 
nth-order constants of motion in m variables. 

2. The fundamental equations 

We consider an operator of the type 

commuting with the m -dimensional Hamiltonian 

(3) H=-' 2 V m +  V(X1,. * * ,  X m L  

where pi = a / a x i  and 4 r  are unknown functions of m Cartesian coordinates xl, . . . , xm. 
Evaluating the commutator [H, L ]  and separately equating to zero the coefficients of all 
distinct products of the p ' s  we have the following system of partial differential equations 
for q5r: 

2 where k = O  , . . . ,  n + l ,  c $ k = c $ i  I,,,, k, ~$'=4i~.. . i~,  dk=a/aXk, a k i = d  /aXkdXl, . . . ,  the 
third term is non-existent for k = n, n + 1 and the first term for k = n + 1, and the 
dummy suffix notation is used throughout. 

Equation (4) is the fundamental equation of the problem. It is already in tensorial 
form and becomes a true tensor equation when the ordinary derivatives are replaced by 
covariant derivatives. Written more explicitly, the equations for the various values of k 
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are 

LV = H ~ O .  (5.n +2)  

Equation (5.1) represents m+nCn+l first-order partial differential equations satisfied by 
C,, functions 4". It will be shown in 0 3 that q ! ~ ~ ,  4"-' are polynomials in 

xl,. . . , xm of degree n and n - 1 respectively. After these functions have been 
determined by solving equations (5.1) and (5.2), one is faced with the much harder task 
of solving the remaining equations, which involve the potential function V. Some 
reductions of these equations to more manageable forms are obtained in Q 4 but not 
much progress is made towards their solution. 

m+n-1 

3. The nature of solutions of the equations independent of V 

To obtain some idea of the solutions of equation (5.1) we consider the set of equations 

(i, j ,  k ,  . . . # 1). 

Integrating these equations from the top, we find that q51..,1= f, 41..,1~ = xlg + h,  
41..,lij = xlp + xlq + r, . . . , where f, g, h, p, q, r, . . . are functions of x2,. . . , xm. Thus 4" 
is a polynomial in x1 of degree not exceeding the number of missing 1's amongst the 
indices of 4", the coefficients of the polynomial involving the other variables x?, , . . , xm. 
Since all indices are equivalent in (5.1), it follows that 4" is a polynomial in all the 
variables with the above restriction on their powers. It will be seen later that the degree 
of the polynomial cannot be higher than n, but the result just stated enables us to make a 
start and write a particular solution of (5.1) in the form 

2 

4il,,,in = (il . . . in 1 a l  . . . aq)xal . . . xa,, 
The coefficients on the right-hand side are the components of a tensor of rank n +q 
symmetric to all permutations of the subscripts of type i and also to all permutations of 
those of type a. Substituted in (5.1), this leads to a system of linear homogeneous 
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equations for the coefficients ( i  1 a) .  These algebraic equations are equivalent to the 
system ( 5 . 1 ) .  

The coefficient tensor introduced above is intimately related to the derivative tensor 

J a ,  ... a q 4 i  l . . . in ,  

and becomes a multiple of the latter when the order of the derivatives equals the degree 
of the polynomial solution of (5.1). We shall now investigate the symmetries of these 
tensors, first for n = 3 and then for arbitrary n. For n = 3, equations ( 5 . 1 )  have the form 

a d i j k  + a i 4 j k I  f a j 4 k l i  + a k 4 f i j  = 0. 
Differentiating this 'cyclic relation' once or twice and choosing i, j ,  k, 1 and the variables 
of differentiation suitably, we have 

Subtracting twice equation (6) from the six equations obtained by the cyclic permu- 
tation of i, j ,  k in (7), we have 

a a b 4 i j k  = a i j 4 k a b  + a j k 4 i a b  + a k i 4 j a b .  (9 .1)  

a a b d i j k  = a i j c 4 k a b  + a j k d i a b  d k i d j a b .  (9 .2)  

Differentiating this with respect to x, gives 

(9.1) and (9 .2)  are two of the symmetry relations of the derivative tensor for n = 3. 
Another relation is obtained by adding together all the equations arising from the cyclic 
permutation of i, j ,  k and a, b, c in equations (8) and (9.2). The result is 

a a b c 4 i j k  = - a i j k 4 a b c .  (10) 

a a ,  ... a , 4  i l  ... i ,  = ( 1 1 )  

It can be proved by induction that the general result for arbitrary n is 

ai  p l . . . i p ,a ,+  1 . . . a q ( - 1 I r 4  i ,r+l  ... i,,a l. . .a,,  

where the sum is over all r-combinations of the i's with fixed al, . . . , a,. For r = q = n 
the summation on the right-hand side of ( 1 1 )  disappears and the symmetry relation 
takes the elegant form 

( 1 2 )  a a ,  ... a n 4 i l . . , i n  = ( - l ) " a i l . . . j " 4 a , . . . a " '  

We shall now prove an important theorem concerning the nature of solutions of 
( 5 . 1 ) .  The above derivation of the symmetries, clearly, remains valid for a tensor with 
q > n. Taking q = n + 1 ,  we have 

a a l ( a a 2  ... a , , + l 4 i l . . . i , )  

= ( - l ) " a a , ( a i l  ... i , 4 a z . , n r ,  1 = ( - l ) n a , t ( a a l i z . . . i , 4 a l  ,... an+l  1 
- a i1al  ... a,, + 14 a ,  i2  ... in*  ( 1 3 )  - 

Thus, the tensor is unaffected by the interchange of an index of 4" with an index of 
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differentiation. Combining this new symmetry with the symmetry already existing in 
the i 's  and the a's ,  we see that the tensor remains unaffected by any permutation of its 
2n + 1 indices. The components of this totally symmetric tensor, the (n + 1)th deriva- 
tives of the 4", must all vanish by virtue of the cyclic relations. This proves the result 
stated earlier that the 4 ,  are polynomials in xi, . . . , x,,, of degree not higher than n. A 
similar result holds for the inhomogeneous equations (5.2). After n - 1 differentiations 
the inhomogeneous terms involving the 4 vanish and the equations take the same form 
as in (13) with n replaced by n - 1. The 4'-' are, therefore, polynomials in the x ' s  of 
degree not higher than n - 1. 

Since the coefficient tensor is a multiple of the derivative tensor the two tensors must 
possess the same symmetries. The symmetries of the coefficient tensor corresponding 
to (11) and (12) are 

(il . . . i, 1 u l  . . . a,) = (--I), ( i p , + ,  . . . iPnal . . . a, 1 i,, . . . ip,ur+l . . . a,) (14) 
i,,, . . . , ip, 

and 

(il . . . in 1 a l . .  . a,) = ( - - l ) ' (u l . .  . a, I il . . . in). (15) 

In (14) the summation is over all r-combinations of the i 's  with fixed a l ,  . . . , a,. The 
relation (15) means that the coefficient of xa, . . . xa, in the expression for 4il, . , jn is equal 
in magnitude to the coefficient of xil . . . xi ,  in the expression for 4al...am. The two 
coefficients are of the same sign if n is even and of opposite signs if n is odd. Relation 
(14) enables one to express every coefficient in a 4" as a sum of coefficients of terms of 
the same degree in other 4"'s. The coefficients in the expressions for 4" available in the 
literature have been found to obey these symmetries in every individual case tested. 
The case n = 3, m = 2, worked out in I, is discussed from this viewpoint in appendix 2. 

We conclude this section by giving an alternative proof of the theorem on the nature 
of solutions of (5.1) and (5.2). Since these equations do not depend on V, some 
simplification can be effected by setting V = 0, H = -$Vz. Now, the most general 
operator commuting with the m -dimensional Laplacian is an arbitrary polynomial in 
themomentapk and the angular momentaMij = xipi -xipi  ( i  < j ;  i , j  = 1,. . . , m).  Using 
the abbreviation MI (I  = 1, . . . , zm(m - 1)) for the Mii taken in any order, the operator 
can be written as 

1 

where the coefficients are symmetric to all permutations of the last k subscripts 
but are otherwise arbitrary. The highest power of the x ' s  in this expansion is n and 
occurs in the term with k = 0. As k increases the power of the x ' s  decreases in steps of 
unity until it becomes zero in the last term with k = n. Thus, the 4"'s are again seen to 
be polynomials of degree n in the x ' s .  Similar considerations apply to equations (5.2). 

4. Differential equations satisfied by V 

From a study of the cases n = 2, m = 3 and n = 3, m = 2, it appears that the elimination 
of + n - 2  and 4n-3 from (5.3) and (5.4), in the general case, will lead to partial differential 
equations of nth and (n - 1)th order for V. The conjecture is found to be correct for 
n = 3 ,4  and arbitrary m. The equations for these cases will be derived here in much the 
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same way as the symmetries of § 3 were derived. The same linear combinations of the 
differentiated cyclic relations are taken in both cases, but, instead of zeros, there occur, 
in the present case, expressions involving V on the right-hand side of the relations. The 
method works for any n, but the complexity of the calculations increases enormously as 
n increases. 

With 

2 Tij = -V24ij - 64ii, a, V, (17) 

equations ( 5 . 3 )  and (5.4), for n = 3 ,  can be written as 

By the theorem of 0 3 ,  the 4 i j k  are cubic and q5ij are quadratic expressions in the x ’s  
containing some arbitrary coefficients. Differentiating (18) with respect to x k  and 
permuting i, j ,  k cyclically, we have 

Partial differential equations for V are obtained by equating to zero the expression for 
d / ( a j k f $ i ) - a j ( a k l 4 i ) .  The equations are third order and of the form 

The tensor & : j /  is antisymmetric to the interchange of subscripts within a partition but 
symmetric to the interchange of partitions. It is therefore of the same symmetry as the 
Riemann tensor. It also satisfies the Bianchi identities 

a m S i k : j / + a i S k m : j l  + a k S m i : j /  = 0 ,  ( 2 3 )  

S i k : j /  f s k j : j /  f S j j : k /  = 0. ( 2 4 )  

In m-dimensional space, the Riemann tensor has &m2(m2 - 1) independent 
components and there are as many differential equations of the type ( 2 2 )  for V. Since 
the first term of the expression (17) for T,, vanishes on differentiation, equations ( 2 2 ) ,  
with Ti = ajj,a,V, assume the form 

and the cyclic relations 

a k / ( ~ i ~ , a , V ) - a i / ( 4 i k a a , V ) - a k j ( 4 i l , a , V )  + a i j ( 4 / k m a a V )  = 0. ( 2 5 )  

A second set of partial differential equations for V is obtained by eliminating 4 from 
equation (19) and using expression ( 2 1 )  (with j = k = (U) for V24i .  Due to cancellation of 
all third-order derivatives of V the process results in second-order equations of the 
form 

0 = 2 d i ( 4 i , a , V ) - 3 d j ( a , ~ i a p .  a , V )  minus the same expression with i, j interchanged. 
( 2 6 )  
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Cancellation of derivatives of the highest order seems to be a general feature of 
equations of this type and is likely to occur for any value of n. 

The various points mentioned above are better illustrated by taking n = 4. In this 
case ( 5 . 3 )  and (5.4) become 

&4ij + ai& + = 2 c j k ,  with 2T;jk = - q v 2 4 i j k  - 124ijkaa,V ( 2 7 )  

aj4i + aidj = -v24ij + uij, with Uti = -64ijaaaV- 124ijapaapV. ( 2 8 )  

Here 4 i j k l  are quartic and q5ijk cubic functions of the x’s. Differentiation of ( 2 7 )  yields 
the relations 

a b ( d a 4 i j + a i 4 j a  + a j 4 i a ) = 2 a b T i i a ,  ( 2 9 . 1 )  

a a ( a b 4 i ,  +ai& + a i & )  = 2aaTijb9 ( 2 9 . 2 )  

( 2 9 . 3 )  

( 2 9 . 4 )  

Subtracting the last two equations of this set from the first two, we obtain 

a a b 4 i j  - a i j 4 a b  = abT, ja  aaTijb - ajTabi - aiTabj, ( 3 0 )  

In the case of the homogeneous equations, akq!qj + + a j d k i  = 0,  for II = 2,  zeros occur 
instead of T’s on the right-hand side of equations ( 2 7 ) ,  ( 2 9 )  and ( 3 0 ) ,  and relation ( 3 0 )  
reduces to aab+ij = Expressions for the third-order derivatives of q5ij are now 
obtained by differentiating and combining equations of the type ( 2 7 )  and ( 3 0 ) .  Thus 

3aabc4i j  = 2aa - a i j 4 b c )  + a i  ( a a j 4 b c  - a b c d a j )  

C a j ( d n i 4 b c  - d b c d ) a i ) + a b c ( a a (  i j + a i  ja +ajdai) 

= 2abcTjja -!r $aijTabc - d j a T b c i  - ajaTbcj 

plus similar terms arising from cyclic permutation of a,  b, c. ( 3 1 )  
This is symmetric to the interchange of i with j and to all permutations of a,  b, c. 
Fourth-order equations for V now follow from the vanishing of the expression for 
dd(aabcI$ij)  - d a ( a b c d & ) ,  and are found to have the form 

sion with a, d interchanged. 
0 = 2abcdTi ja  + 2 a i j d T a b c  - ajbdTcai  - a j c d T a b i  - a i b d T c a j  - a i c d T a b j  minus the Same eXpreS- 

( 3 2 )  

This is symmetric to the interchange of i with j ,  to the interchange of b with c and to the 
pairwise interchange of ij with bc, but antisymmetric to the interchange of a with d.  

Another set of partial differential equations for V is obtained by eliminating bi from 
equation ( 2 8 ) .  Because of the formal similarity between equations ( 1 8 )  and ( 2 8 ) ,  the 
process of elimination gives similar equations in the two cases. In place of equation ( 2 2 )  
we now have 

K k : j l  ~ - a a a ( a k l 4 i j - a j l 4 j k - a k j 4 i l  + a i j 4 r k ) + a k l U i j - a j l U j k  - a j k U i l + a i j U [ k  = o s  ( 3 3 )  

Using ( 3 1 ) ,  the first line of this equation can be written as 

-2(aakl?;:ia - 8 a i f T k a  -aajkTirila + a a i j T k l a ) *  

Omitting a common factor and writing 4 i j k a  a, V for T i j k  and V + 24ij,0 a w p  V for 
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UI,, we obtain the equations in the final form 

a k l ( 4 1 , c z a a V )  - a i l ( d ' , k a a a V )  - a , k ( 4 i l , a a V ) + a i , ( 4 l k a d a V )  

-2[akl(a&i,a@ * 80 v) - a i l ( a p d ' , k a p  * aa v) - a , k  ( a & i l m p  . aa v) 
- t a i l  ( a p 4 k l a p  * d m  VI1 = 0. (34)  

The highest-order terms again cancel and the order of the equations is reduced to three. 
Like s , k  ,I the tensor V k  has all the symmetries of the Riemann tensor and, besides, 
satisfies the Bianchi identities and the cyclic relations. 

can be expressed as a triple integral over V and the known functions 
&kl. In the same manner, c,hI can be expressed as a double integral over V, &kl, 4 y k ,  &. 
For arbitrary n the process can be continued until the last function 4' is reached. 

Using (31) ,  

5. The anisotropic oscillator 

To illustrate the use of the above theory let us apply it to one of the simplest systems, the 
anisotropic oscillator. In a search for the constants of motion of this system we shall 
restrict ourselves to the case it = 3,  m = 2, for which detailed calculations have been 
carried out by Majumdar and Englefield (1977). 

For an operator of the type 

L = 4 l p ?  +42p:p2+43pIp; +44pz +45p: +46plp2+#'7p; + 4 8 P 1 + 4 9 P 2 + 4  (35)  

commuting with the Hamiltonian H = - f ( p :  + p i )  + V(x, y ) ,  the solution of the equa- 
tions (5.1), (5.2) yields (Majumdar and Englefield 1977) 

4111 1= 41 = ay3 + by2 +cy + d 

34112 = 42 = -3axy2-2bxy -cx - f y 2 -  hy - k 

34122= 4 3 =  3ax2y + bx2+2fxy + hx + g y  + I  
3 2  

4 2 2 2  = 4 4  = -ax - f x  - gx - e, 

qh1 = 45 = -3axy - bx + m y 2 + ( q  + f ) y  + I  

2412 = 4 6  = 3ax -2mxy - 3ay2 + ( n  - b ) y  -qx + s 

4 2 2  = 47 = 3axy + m x 2  -nx  + f y  -r ,  

(37)  2 

where the coefficients of the powers of x, y are all arbitrary. In the case of the 
anisotropic oscillator with V = $ ( A x 2  +By2),  A # B, equations (26) ,  (25)  (equations 
(2.9), (2.10) of I )  reduce to 

8 m x y ( A  - B )  + ~ ( 2 f +  q ) ( 4 A  - B )  + y (b  + n ) ( - A  + 4 B )  + ( g  - c - s)(A - B )  = 0 

and 

-15axy(A - B )  + bx(-5A + 2 B )  + f y ( - 2 A  + 5B) - h ( A  - B )  = 0. 

These equations can hold for B # 4 A  only if a = h = m = 2 f +  q = g - c - s = 0. 
Furthermore, consistency of the equation (5.4) (equation (2.7) of I) requires that 
b = f = O .  Thus 

a = b  = f = h  = m  = q  = g - c - s  = O .  
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Retaining the other coefficients, we have from equations (5.3) and (5.4) (equations 
(2.6), (2.7) of I )  the following expressions for (b8 ,  d9, 4: 

(38) 

(39 )  

( b -  8 -  - 2 ~  2 2  ( ~ y + d ) A + y ( ~ ~ ~ / 2 + k ~ ) B - ( & y ~ + l y ~ ) B  +(gy3/6+4ly2)A+~y + p ,  
(bg= -x(gy2/2+ly)A+qy2(gx + e ) B + f ~ c x 3 + k x 2 ) A - ( c x 3 / 6 + k x 2 / 2 ) B  -ax + y ,  

(b = -L 2 ~ ~ ( 3 c + g ) A + ~ y ( 3 g x + c x + 3 e + k ) B  

+ry2B-rx2A-$nxy2(A-2B)-$xdA-$xlA.  

These expressions substituted in (5.5) give 

xA(-n/2 +p)+  yBy + axy(A - B )  +ikx2y(4A - B ) B  +$1xy2(A -4R)A  + x 3 d A 2  

fqy3eBZ-&x3y(A -B)(9A - B )  + i g x y 3 ( A  - B ) ( A  -9B)  = 0. (41)  

Constants of motion can now be determined by taking only one of the coefficients r, n, 1, 
c, g at a time to be different from zero, The following constants of motion are thus 
obtained: 

Non-zero Frequency 
coefficient ratio 

Constant of motion 

As their existence implies the separability of the Schrodinger equation (Winternitz et a1 
1966) in the respective coordinate systems, Lc may be caJed the Cartesian and L,  the 
parabolic constant of motion. L,  is the difference of two independent constants of 
motion, Ha = p 1  - A x 2 ,  HZ = p :  - By2. The commutators of the constants of motion 
for the frequency ratio 2 : 1 are 

2 

[Lo &I= 4L, [L,, L ]  = 16BL,, 
[L,, L]=-H:  +2HiH2-3B"Lk, [Lc, Lr 1 = 0, 

[L, Lk] = 8B(&HLp+ 3H1Lp+ 3LpHi), 

[Lp, Lk]=2(8HL+3HlL+3LH1). 

Since three of the six commutators are quadratic, not linear, functions of L,, L,, L,  Lk, 
these operators do not generate a closed Lie algebra (Englefield 1972 0 1.1). 
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Appendix 1 

Equations ( 5 )  are obtained by separately equating to zero the coefficients of all distinct 
products of the p ' s  in the expression for [H, L]. To find the nature of the second term of 
the equations let us consider the product pil  . . . pi"-, associated with the (r+2)th 
equation of the set. If il occurs a i  times, iz occurs a2 times, . . . etc. in it, then, under the 
permutation of the i ' s ,  the second term of the equation develops into a sum, while the 
other terms, being symmetric, are multiplied by the factor ( n  - r ) ! / ( a l !  . . . an-r!).  The 
terms in the sum with il, iz, . . . etc. as indices of differentiation are, respectively, 

(a1,. . . , a,-r)(n - r - l ) ! / ( a 1 !  . . . an-r ! )  

in number. Permuting the indices in 8i~4i~,,,i~-li,+~,,,i"-, is, therefore, equivalent to taking 
every index once to be an index of differentiation and multiplying the series so 
developed by ( n  - r -  l ) ! / (a l !  . . . an-r ! ) .  When this is done and a factor 
( n  - r ) ! / ( a i !  . , , a,-,!) is taken out the equations assume precisely the form ( 5 ) .  

Next, we prove the assertion made in § 3 that the coefficient tensor is a multiple of 
the derivative tensor. Solutions of equations (5.1) and (5.2) can be expressed tensori- 
ally in the form 

4i~,,,cp = (ii . . . ip 1 ai . . . a q ) X a l  . . . xa,, ( A l . l )  

When terms of the same kind arising from the q-fold summation on the right-hand side 
are added together, the expression assumes the form 

4il..,ip [q!/pi!. . . p q ! I ( i l . .  . ip I a i . .  . u,)x,, . . x a 4 )  (A1.2) 

summed over distinct products of the x's. Here, a l  occurs p1 times, az occurs p2 times, 
and so on. Differentiating (A1.2) p1 times with respect to xal, p2 times with respect to 
xa2, etc. gives 

80 l . . . a q 4 i l . . . i p  = q !  ( i l  . . ip I a1 . . aq). (A1.3) 

with p = n, n - 1; q c p .  

Appendix 2 

In solution (36) the non-zero components of the coefficient tensor have the values 

(1 1 1 1 222) = a, 

(1 12 1 12) = -b/3, (112122)=-f/3, (1121l)=-c/3, 

(112/2)= -h/3, (1221112) = 4 3 ,  (122111) = b/3, (122112) = f/3, 

(12211) = h/3, (12212) = g/3, (22211 11) = -a, (22211 1) = -f, 

(1 11 j 22) = b, (111 12) = c, (1121 122) = 4 3 ,  

(22211) = -g. (A2.1) 

It is easily verified that these coefficients satisfy the symmetry relations 

(ijk 1 abc) = -(abc 1 i jk )  

(ijk I abc) = (iab ( j k c )  + ( j a b  1 kic) + (kab 1 ijc) 

(ijk 1 abc) = -(ija I kbc) - ( jka  1 ibc) - (kia 1 jbc) 

( A 2 . 2 ~ )  

(A2.2b) 

( A 2 . 2 ~ )  

(ijk 1 ab) = (jab 1 jk) + ( jab  1 k i )  + (kab I i j )  (A2.2d) 
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( i j k lab )=- ( i ja Ikb ) - ( j ka  Iib)-(kia lib) 

(ijk I a )  = -(ija 1 k )  - ( jka  1 i )  - (kia I j ) .  
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